65 research outputs found

    Advanced interpretation of land subsidence by validating multi-interferometric SAR data: the case study of the Anthemountas basin (Northern Greece)

    Get PDF
    The potential of repeat-pass space borne SAR (Synthetic Aperture Radar) interferometry has been exploited to investigate spatial patterns of land subsidence in the Anthemountas basin, in the northern part of Greece. The PSI (Persistent Scatterer Interferometry) approach, based on the processing of long series of SAR acquisitions, has been applied to forty-two images acquired in 1995–2001 by ERS1/2 satellites. Interferometric results have been analysed at a basin scale as support for land motion mapping and at a local scale for the characterisation of ground motion events affecting the village of Perea in the Thermaikos municipality and the "Macedonia" international airport. PSI results revealed a moderate subsidence phenomenon along the wider coastal zone of Anthemountas basin corresponding to intense groundwater extraction. Highest values, exceeding −20 mm yr−1, were measured in the airport area where the thickest sequence of compressible Quaternary sediments occurs. Intense subsidence has been detected also in the Perea village (maximum deformation of −10 to −15 mm yr−1), where a series of fractures, causing damages to both buildings and infrastructure, occurred in 2005–2006

    PSInSAR Analysis in the Pisa Urban Area (Italy): A Case Study of Subsidence Related to Stratigraphical Factors and Urbanization

    Get PDF
    Permanent Scatterer Interferometry (PSI) has been used to detect and characterize the subsidence of the Pisa urban area, which extends for 33 km2 within the Arno coastal plain (Tuscany, Italy). Two SAR (Synthetic Aperture Radar) datasets, covering the time period from 1992 to 2010, were used to quantify the ground subsidence and its temporal evolution. A geotechnical borehole database was also used to make a correspondence with the detected displacements. Finally, the results of the SAR data analysis were contrasted with the urban development of the eastern part of the city in the time period from 1978 to 2013. ERS 1/2 (European Remote-Sensing Satellite) and Envisat SAR data, processed with the PSInSAR (Permanent Scatterer InSAR) algorithm, show that the investigated area is divided in two main sectors: the southwestern part, with null or very small subsidence rates (<2 mm/year), and the eastern portion which shows a general lowering with maximum deformation rates of 5 mm/year. This second area includes deformation rates higher than 15 mm/year, corresponding to small groups of buildings. The case studies in the eastern sector of the urban area have demonstrated the direct correlation between the age of construction of buildings and the registered subsidence rates, showing the importance of urbanization as an accelerating factor for the ground consolidation process

    Updated landslide inventory of the area between the Furiano and Rosmarino creeks (Sicily, Italy)

    Get PDF
    A 1:10,000 scale landslide inventory map has been prepared for the area between the Furiano and Rosmarino creeks, in the Nebrodi Mountains (north-eastern Sicily, Italy), a territory highly prone to slope failures, due to the local geological and geomorphological settings and intense rainfall. The landslide inventory database included within the Hydrogeological Setting Plan of the Sicily Region has been used as a starting point for this work. The updated inventory map has been compiled through a combination of conventional approaches (i.e. aerial photo-interpretation and field surveys) and new remote sensing techniques (ground deformation measurements obtained by interferometric analysis of satellite Synthetic Aperture Radar images). The new landslide inventory consists of 566 events, classified according to their typology and state of activity

    Multi-Temporal Evaluation of Landslide Movements and Impacts on Buildings in San Fratello (Italy) By Means of C-Band and X-Band PSI Data

    Get PDF
    This work provides a multi-temporal and spatial investigation of landslide effects in the San Fratello area (Messina province within the Sicily region, Italy), by means of C-band and X-band Persistent Scatterer Interferometry (PSI) data, integrated with in situ field checks and a crack pattern survey. The Sicily region is extensively affected by hydrogeological hazards since several landslides regularly involved local areas across time. In particular, intense and catastrophic landslide phenomena have recently occurred in the San Fratello area; the last event took place in February 2010, causing large economic damage. Thus, the need for an accurate ground motions and impacts mapping and monitoring turns out to be significantly effective, in order to better identify active unstable areas and to help proper risk-mitigation measures planning. The combined use of historical and recent C-band satellites and current X-band Synthetic Aperture Radar sensors of a new generation permits spatially and temporally detection of landslide-induced motions on a local scale and to properly provide a complete multi-temporal evaluation of their effects on the area of interest. PSI ground motion rates are cross-compared with local failures and damage of involved buildings, recently recognized by in situ observations. As a result, the analysis of landslide-induced movements over almost 20 years and the validation of radar data with manufactured crack patterns, permits one to finally achieve a complete and reliable assessment in the San Fratello test site

    The effectiveness of high-resolution LiDAR data combined with PSInSAR data in landslide study

    Get PDF
    The spatial resolution of digital elevation models (DEMs) is an important factor for reliable landslide studies. Multi-interferometric techniques such as persistent scatterer interferometric synthetic aperture radar (PSInSAR) are used to evaluate the landslide state of activity and its ground deformation velocity, which is commonly measured along the satellite line of sight (LOS). In order to compare velocities measured by different satellites in different periods, their values can be projected along the steepest slope direction, which is the most probable direction of real movement. In order to achieve this result, DEM-derived products are needed. In this paper, the effectiveness of different DEM resolutions was evaluated in order to project ground deformation velocities measured by means of PSInSAR technique in two different case studies in the Messina Province (Sicily, southern Italy): San Fratello and Giampilieri. Three DEMs were used: (i) a 20-m resolution DEM of the Italian Military Geographic Institute (IGM), (ii) a 2-m resolution DEM derived from airborne laser scanning (ALS) light detection and ranging (LiDAR) data for the San Fratello 2010 landslide, and (iii) a 1-m resolution DEM derived from ALS LiDAR data for the area of Giampilieri. The evaluation of the applied method effectiveness was performed by comparing the DEMs elevation with those of each single permanent scatterer (PS) and projecting the measured velocities along the steepest slope direction. Results highlight that the higher DEM resolution is more suitable for this type of analysis; in particular, the PS located nearby the watershed divides is affected by geometrical problems when their velocities are projected along the steepest slope

    The Costa Concordia last cruise: The first application of high frequency monitoring based on COSMO-SkyMed constellation for wreck removal

    Get PDF
    AbstractThe Italian vessel Costa Concordia wrecked on January 13th 2012 offshore the Giglio Island (Tuscany, Italy), with the loss of 32 lives. Salvage operation of the vessel started immediately after the wreck. This operation was the largest and most expensive maritime salvage ever attempted on a wrecked ship and it ended in July 2014 when the Costa Concordia was removed from the Giglio Island, and dragged in the port of Genoa where it was dismantled. The refloating and removal phases of the Costa Concordia were monitored, in the period between 14th and 27th of July, exploiting SAR (Synthetic Aperture Radar) images acquired by the X-band COSMO-SkyMed satellite constellation in crisis mode. The main targets of the monitoring system were: (i) the detection of possible spill of pollutant material from the vessel and (ii) to exclude that oil slicks, illegally produced by other vessels, could be improperly linked to the naval convoy during its transit along the route between the Giglio Island and the port of Genoa. Results point out that the adopted monitoring system, through the use of the COSMO-SkyMed constellation, can be profitably employed to monitor emergency phases related to single ship or naval convoy over wide areas and with a suitable temporal coverage. Furthermore, the refloating and removal phases of the Costa Concordia were a success because no pollution was produced during the operations

    Synergic use of satellite and ground based remote sensing methods for monitoring the San Leo rock cliff (Northern Italy)

    Get PDF
    AbstractThe historic town of San Leo (Emilia Romagna Region, northern Italy) is located on top of an isolated rock massif above the Marecchia River valley hillside. On February 27th 2014, a northeastern sector of the massif collapsed; minor structural damages were reported in the town and a few buildings were evacuated as a precautionary measure. Although no fatalities occurred and the San Leo cultural heritage suffered no damage, minor rock fall events kept taking place on the newly formed rock wall, worsening this hazardous situation. In this framework, a monitoring system based on remote sensing techniques, such as radar interferometry (both spaceborne and ground-based) and terrestrial laser scanning, was planned in order to monitor the ground deformation of the investigated area and to evaluate the residual risk. In this paper the main outlines of a 1-year monitoring activity are described, including a pre-event analysis of possible landslide precursors and a post-event analysis of the displacements of both the collapse-affected rock wall sector and the rock fall deposits

    The rapid moving Capriglio earth flow (Parma Province, North Italy): multi-temporal mapping and GB-InSAR monitoring

    Get PDF
    This research presents the main findings of the multi-temporal mapping and of the long-term, real-time monitoring of the Capriglio landslide in the Emilian Apennines (Northern Italy). The landslide, triggered by prolonged rainfall and rapid snowmelt, activated of April 6th 2013. It is constituted by two main adjacent enlarging bodies with a roto-translational kinematics. They activated in sequence and subsequently joined into a large fast moving earth flow, channelizing downstream the Bardea Creek, for a total length of about 3600 meters. The landslide completely destroyed a 450 m sector of the provincial roadway S.P. 101, and its retrogression tendency put at high risk the Capriglio and Pianestolla villages, located in the upper watershed area of the Bardea River. Furthermore, the advancing toe seriously threatened the Antria bridge, representing the "Massese" provincial roadway S.P. 665R transect over the Bardea Creek, the only strategic roadway left able to connect the above-mentioned villages. With the final aim of supporting local authorities in the hazard assessment and risk management during the emergency phase, on May 5th 2013 aerial optical surveys were conducted to accurately map the landslide extension and evolution. Moreover, a GB-InSAR monitoring campaign was started in order to assess displacements of the whole landslide area. The versatility and flexibility of the GB-InSAR sensors allowed acquiring data with two different configurations, designed and set up to continuously retrieve information on the landslide movements rates (both in its upper slow-moving sectors and in its fast-moving toe). The first acquisition mode revealed that the Capriglio and Pianestolla villages were affected by minor displacements (order of magnitude of few millimetres per month). The second acquisition mode allowed to acquire data every 28'', reaching very high temporal resolution values by applying GB-InSAR technique (Monserrat et al., 2014; Caduff et al., 2015)
    • …
    corecore